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Abstract. We explore the possibility that QCD may undergo a phase transition as a function of the strange
quark mass. This would hint towards models with “spontaneous color symmetry breaking” in the vacuum.
For two light quark flavors we classify possible colored quark–antiquark, diquark and gluon condensates
that are compatible with a spectrum of integer charged states and conserved isospin and baryon number.
The “quark mass phase transition” would be linked to an unusual realization of baryon number in QCD2

and could be tested in lattice simulations. We emphasize, however, that at the present stage the Higgs
picture of the vacuum cannot predict a quark mass phase transition – a smooth crossover remains as
a realistic alternative. Implications of the Higgs picture for the high-density phase transition in QCD2

suggest that this transition is characterized by the spontaneous breaking of isospin for nuclear and quark
matter.

1 Introduction

Spontaneous color symmetry breaking by a colored quark–
antiquark condensate in the vacuum has been proposed
[1] as a “complementary” or “dual” picture for low en-
ergy QCD with three flavors of light quarks. This idea
relies on the correspondence between a confinement and a
Higgs description [2] and finds an analogy in high-density
quark matter [3]. First dynamical investigations suggest
that the color octet q̄q-condensate is induced dominantly
by instanton effects [4], with fermion fluctuation effects
going into the same direction [5]. The phenomenological
success of this description for realistic QCD with three
flavors of light quarks [1] includes the hadronic and lep-
tonic decays of the ρ-, K- and π-mesons, including ex-
planations of vector dominance and the ∆I = 1/2 rule
for weak kaon decays. The coincidence of deconfinement
with the high temperature chiral phase transition in QCD
results from the melting of the octet condensate at high
temperature [6].

The idea is intriguing enough that one may look for
possible tests to verify or falsify this picture. Unfortu-
nately, finding a clear-cut test is not so easy. The first
is, of course, comparison with observation. On a rough
level, the model actually does surprisingly well. Finding
decisive quantitative precision tests is hindered at present
by the lack of knowledge of the effective action relevant
for low momentum scales. As long as the parameters in
the effective action are not computed from QCD there
remains substantial freedom to adapt parameters to ob-
servation, limiting the predictivity. Second, direct tests by
lattice simulations require some thought since on a funda-
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mental level gauge symmetries are never spontaneously
broken and the Higgs picture is only an approximate lan-
guage – which may nevertheless be very useful, as is well
known from the electroweak gauge theory. In particular,
the color octet q̄q-bilinear has a zero expectation value in
any gauge-invariant formulation. In lattice simulations a
non-zero octet expectation value could be seen only in an
appropriately gauge-fixed version. The difficulty of finding
a direct simple lattice test is actually quite profound and
can be traced back to the equivalence of the Higgs and
confinement pictures. Needless to say that the identifica-
tion of a suitable test quantity and its measurement by a
simulation would be of great value.

As a third possibility, one may want to look more
explicitly into the proposal that instanton dynamics is
responsible for “spontaneous color symmetry breaking”.
Simulations based on instanton ensembles do not exhibit
the full local color symmetry and therefore could, in prin-
ciple, show an octet condensation. The problem with a
first simulation [7] concerns the limited value of an instan-
ton ensemble where the large-scale instantons are removed
“by hand”. These large-scale instantons are responsible for
the octet condensation in the computation of [4]. In fact,
the octet condensate is supposed to provide the infrared
cut-off for the instanton ensemble since it leads to a non-
vanishing gluon mass. In more explicit terms an instanton
computation should proceed in two steps. For the func-
tional integral over gauge fields and quarks one first per-
forms the integration over gauge fields for fixed values of
the fermion fields and approximates it by a suitable inte-
gral over instantons.1 The second step solves the remain-

1 The integration over the fermionic zero modes may be in-
cluded in the first step
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ing functional integral over instanton collective coordi-
nates and fermions by simulation. The first step needs the
computation of instanton solutions in the presence of non-
zero fermion-bilinear sources (currents) for the gauge field.
For colored bilinears this introduces an important depen-
dence of the effective instanton ensemble on the fermion
bilinears which has not been taken into account so far.
Including the corresponding interactions for large q̄q is
crucial for the proposed IR cut-off [4] and mandatory for
a test of this idea.

Waiting for a possible test along these lines one may
investigate, as a fourth alternative, if a characteristic de-
pendence on some “external parameters” like temperature
or quark masses could lead to a test. These parameters are
not easily varied in nature, but for lattice simulations this
is less of a problem. For the temperature dependence the
octet condensate actually does fine. It can explain [6] in
a natural way the coincidence of chiral symmetry restora-
tion and deconfinement at the same critical temperature
and leads to a realistic Tc ≈ 170 MeV for three light quarks
with equal mass. In the present paper we look for possible
tests via the dependence of strong interaction physics on
the quark masses.

The realization of a Higgs picture of the QCD vacuum
depends strongly on the number of light quark flavors.
Its original proposal relies on the equality of the number
of light flavors and the number of colors which permits
a “color-flavor-locked” [4] diagonal global SU(3) symme-
try. On the other side, no q̄q-condensate is available for an
infrared cut-off in pure QCD without quarks (gluodynam-
ics). If the octet condensate picture [1] applies for three
light quark flavors, one would expect an important qual-
itative change as the three equal quark masses increase.
Beyond a critical quark mass the infrared cut-off of glu-
odynamics is expected to dominate, and a possible octet
condensate should disappear. It is conceivable that this
qualitative change becomes visible in lattice simulations
as a phase transition or a relatively sharp crossover as a
function of the quark mass. This could be tested once re-
alistic quark masses can be attained in simulations with
dynamical fermions.

For two light flavors or the limit of a large strange
quark mass the situation is even more complicated. A
simultaneous condensation of q̄q-pairs and diquarks has
been proposed for the vacuum of QCD2 [8]. The diquark
condensate introduces very interesting features which dis-
tinguish QCD2 from the three-flavor case QCD3. Notably,
baryon number is spontaneously broken by the diquark
condensate and replaced by a new type of conserved
baryon charge B′. Whereas two of the six quarks carry
B′ = 1 and can be identified with the proton and neu-
tron, the other four have B′ = 0. This leads to an interest-
ing Higgs description where quarks carry fractional quark-
baryon charge Bq = 1/3 whereas they are integer charged
with respect to B′. This particular feature of QCD2 in-
fluences strongly the transition to the high-density and
high-temperature state [8,9].

Lowering the strange quark mass from high values to
zero moves us from QCD2 to QCD3. The different realiza-

tion of baryon number in QCD2 and QCD3 suggests the
possibility that a phase transition could occur at some
critical strange quark mass ms,c. For this critical value
the baryon charge of the hyperons Σ and Λ switches from
B′ = 0 (for QCD2) to B = 1 (for QCD3). A similar
change occurs for the effective strangeness quantum num-
ber. From the observed realization of B and S one con-
cludes that ms,c should be higher than the physical value
of ms. A phase transition as a function of ms can be stud-
ied by lattice simulations. Since the existence and the de-
tails of such a phase transition depend crucially on the
condensates in the vacuum of QCD2, in particular on the
occurrence of diquark condensation, the Higgs picture of
the QCD vacuum cannot clearly predict the presence of a
transition at the present stage. Nevertheless, the observa-
tion of such a transition in lattice simulations would give
a very important hint about the vacuum condensates in
QCD!

In fact, in the absence of colored condensates one ex-
pects that the usual color singlet q̄q-condensates change
smoothly as a function of the quark mass. At least there
is no obvious reason for a phase transition. The observa-
tion of a phase transition between QCD3 and QCD2 as a
function of ms or between QCD with three or two light
flavors and gluodynamics could therefore be interpreted
as a rather clear signal for the occurrence of other con-
densates. In particular, we will see that it could find a
natural explanation within a Higgs picture with an octet
condensation in the vacuum!

In this note we explore the possibility of testing the
Higgs picture of the QCD vacuum by a phase transition
as a function of ms in more detail. For this purpose we
present a systematic study of possible symmetry-breaking
patterns in QCD2 with two flavors. We restrict our dis-
cussion to vacuum states which preserve a global isospin
symmetry such that the eight gluons transform as a triplet
(ρ) two doublets (K∗, K̄∗) and a singlet (ω). Similarly,
two of the quarks should carry the quantum numbers of
the proton and the neutron. Our classification of q̄q, di-
quark and gluonic condensates carries over to the high-
density state of QCD2. Dynamical arguments point to a
simultaneous condensation of q̄q and diquarks in the high-
density state of QCD2 [9]. This implements color-flavor
locking for two flavors. Our discussion of arbitrary expec-
tation values of isospin-conserving q̄q- and diquark opera-
tors partly overlaps with other discussions of high-density
condensates [10,3]. For the vacuum state we extend the
discussion of [8] by the inclusion of other possible con-
densates.2 Since all arguments presented here are solely
based on symmetry properties they apply independently
of a given dynamical scenario which would explain how
the color symmetry-breaking condensates are generated.

Besides the possible phase transition between QCD3
and QCD2 as a function of the strange quark mass we
are interested here in a second issue. We want to clas-
sify the characteristics of a possible high-density phase
transition in QCD2 in dependence on the baryon den-

2 See also [11] for early discussions of the Higgs mechanism
for SU(3)-gauge theories with fundamental scalars
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sity, assuming3 that a colored condensate occurs in the
vacuum. For both purposes we first study possible con-
densates which might be relevant for the ground state
or the high-density state of QCD2. We begin in Sect. 2
with quark–antiquark condensates transforming as color
octets. This discussion is extended in Sect. 3 to include
diquark condensates whereas gluonic condensates in non-
trivial color representations are added in Sect. 4.

In Sect. 5 we turn to the transition between QCD2 and
QCD3 as the strange quark mass is lowered from very large
values towards zero. If QCD2 is characterized by a di-
quark condensate, a phase transition is plausible (but not
necessary). The high-density phase transition in QCD2 is
discussed in Sect. 6. Its characteristics depend on the con-
densates in the vacuum, in particular on the question of
a vacuum-diquark condensate. A continuous crossover to
the high-density phase becomes possible if isospin is con-
served in the high-density phase. We suggest that sponta-
neous breaking of isospin in the high-density phase leads
to a true phase transition. The spectrum of excitations in
nuclear and quark matter contains in this case a mass-
less Goldstone boson a0 responsible for superfluidity as
well as two light pseudo-Goldstone bosons a± in addi-
tion to the pions. Furthermore, we present in Sect. 7 an at
first only partially successful attempt to understand the
ground state of pure QCD (no light quarks) in terms of
color symmetry-breaking gluonic condensates. Finally, in
Sect. 8 we discuss the transition to gluodynamics when all
three light quarks get heavy simultaneously. In particular,
we investigate the consequences of the dual description of
the QCD-vacuum by a Higgs and confinement picture for
the shape of the heavy quark potential. Our conclusions
are presented in Sect. 9.

Our main findings are as follows.
(1) For QCD2 the condensation of both a color octet
quark–antiquark pair and an antitriplet (or sextet) di-
quark pair in the vacuum would lead to complete “spon-
taneous symmetry breaking” for the local color group [8].
All gluons acquire a mass. A residual global SU(2) isospin
symmetry and global baryon number B′ for the proton
and neutron remain preserved. The local abelian electro-
magnetic symmetry leads to integer charges Q for the
quarks. In the Higgs picture the quarks are identified with
baryons. Chiral symmetry is spontaneously broken and
the baryons are massive. The massive gluons are integer
charged and can be associated with eight vector mesons.
Without the diquark condensate one of the gluons corre-
sponding to the ω-meson would remain massless.
(2) As the strange quark is added and its mass lowered,
two-flavor QCD transmutes into realistic QCD and finally
into three-flavor QCD with three massless or very light
quarks. For a very heavy strange quark the dynamics re-
mains essentially the same as for two-flavor QCD. A new
global symmetry is added, however, which acts on the new
massive excitations. In the vacuum it corresponds to a new
conserved strangeness quantum number S′. All s-quarks

3 Without a colored vacuum condensate this phase transition
is extensively discussed in [10]

have S′ = −1. The QCD vacuum with diquark conden-
sation exhibits now three independent global symmetries
(in the absence of electromagnetism) which correspond to
Q,B′, and S′.
(3) The standard symmetries B and S are not realized by
the vacuum or high-density state of QCD2 if all gluons ac-
quire a mass from isospin-conserving scalar condensates.
These generators are broken by the diquark condensate.
The spontaneous breaking of B (or S) induces, however,
no Goldstone boson since it is accompanied by the break-
ing of a local symmetry which is part of the color sym-
metry. The “would-be Goldstone boson” is eaten by the
Higgs mechanism. (It is the longitudinal component of the
λ8-gluon or ω-meson.)
(4) For a light strange quark mass equal to the up and
down quark mass one expects the unbroken global SU(3)-
symmetry of QCD3. In this case the color octet conden-
sate gives mass to all gluons. In particular, the ω ac-
quires a mass from the condensation of the strangeness
components of the color octet quark–antiquark pair. No
diquark condensate is possible in the vacuum since this
would break baryon number. The preserved exact global
symmetries correspond now to Q,B and S. The quantum
numbers B and S for the fermions in QCD3 differ from B′
and S′ for QCD2 in presence of a diquark condensate. In
this case one therefore expects a transition as a function
of the strange quark mass ms, from a diquark condensate
for large ms to an (almost) SU(3)-symmetric octet con-
densate for small ms.
(5) The transition between QCD3 and QCD2 may be as-
sociated with a phase transition (as a function of ms). We
note that an intermediate state with both an antitriplet
diquark condensate and non-vanishing strangeness com-
ponents of the octet condensate would lead to a state
with a different realization of the symmetries. One of the
global symmetries (S) is broken in such a state, implying
the existence of an exactly massless Goldstone boson and
therefore superfluidity. The transition between large and
small ms could therefore either proceed directly by a first-
order phase transition or pass by two transitions with an
intermediate superfluid phase. As an alternative one may
conceive an intermediate Coulomb-like phase where only
the on-strange components of the octet condense and one
gluon remains massless in the Higgs picture. As a gen-
eral remark we recall, however, that the Higgs picture is
only an approximation and may not be reliable for all
questions. Since no global symmetries of the vacuum are
altered as ms switches from large to small values an ana-
lytic crossover remains possible as well.
(6) We suggest that the high-density transition to nuclear
matter is characterized by a spontaneous breaking of the
global isospin symmetry due to a dineutron condensate. In
this event an exactly massless Goldstone boson a0 exists in
nuclear matter, corresponding to the spontaneous break-
ing of the global I3-symmetry. (The latter is an exact sym-
metry even in presence of non-vanishing quark masses and
electromagnetism.) In case of spontaneous isospin break-
ing, nuclear matter is a superfluid. In addition, two new
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Table 1. States with conserved SU(2)I

Electric Massless
Condensate Superfluidity charge gluons

A 83 ξ̄1 no integer 1
B 83 + 3̄1 ξ̄1, δ̄1 no integer 0
C 3̄1 δ̄1 no integer 3

D 83, 82 ξ̄1, ξ̄2 no integer 0

E 83, 82, 3̄1, ξ̄1, ξ̄2, δ̄1 yes integer 0

F 83, 10 ξ̄1, ā no fractional 0
G 83, 3̄1, 10 ξ̄1, δ̄1, ā no fractional 0

light scalars a± correspond to the breaking of the genera-
tors I±. The mass of these pseudo-Goldstone bosons van-
ishes in the limit of equal up and down quark masses and
in the absence of electromagnetism. This behavior is simi-
lar to the well-known pions. Spontaneous isospin breaking
may occur also for the high-density “quark matter” phase
of QCD2.

Before starting with a more detailed description of the
different possible “states” of QCD2 in the main part of
this paper, we present a brief summary in Table 1. Here
the different possible condensates are denoted by their
SU(3)c-representation with the SU(2)-flavor representa-
tion as a subscript. The naming and details are explained
in the main text. We do not list the usual color singlet
q̄q-condensate which may always accompany the other
condensates. The standard picture of the QCD vacuum
would have vanishing expectation values for all conden-
sates listed in Table 1.

2 Quark–antiquark color octet

Let us start with a discussion of the color symmetry-
breaking pattern induced by quark–antiquark condensates
in the vacuum of QCD2. This corresponds to the entry (A)
in Table 1. With respect to the SU(3)c group a quark–
antiquark pair can be in a singlet ϕ̃ or an octet χ̃

ϕ̃
(1)
ab = ψ̄L ib ψR ai , ϕ̃

(2)
ab = −ψ̄R ib ψL ai,

χ̃
(1)
ij,ab = ψ̄L jb ψR ai − 1

3
ψ̄L kb ψR ak δij ,

χ̃
(2)
ij,ab = −ψ̄R jb ψL ai +

1
3
ψ̄R kb ψL ak δij . (1)

Here the color indices i, j run from 1 to 3 and the flavor
indices a, b = 1, 2 denote the up and down quark. We con-
sider vacuum expectation values of ϕ̃ and χ̃ that lead to
color-flavor locking where a diagonal SU(2)I -subgroup of
local SU(2)c-color and global vector-like SU(2)F -flavor re-
mains unbroken. The unbroken global “physical” SU(2)I

symmetry is associated with isospin. The decomposition
of the SU(2)c ×SU(2)F -representations ϕ̃, χ̃ with respect
to SU(2)I ,

Table 2. Charges of the up and down quarks

Q̃ Qc Q I3 S B B′ S′ Q′

u1 2/3 2/3 0 0 −1 1 0 0 1/6 Σ0, Λ0

u2 2/3 −1/3 1 1 −1 1 0 0 7/6 Σ+

u3 2/3 −1/3 1 1/2 0 1 1 0 2/3 p

d1 −1/3 2/3 −1 −1 −1 1 0 0 −5/6 Σ−

d2 −1/3 −1/3 0 0 −1 1 0 0 1/6 Σ0, Λ0

d3 −1/3 −1/3 0 −1/2 0 1 1 0 −1/3 n

ϕ̃ : (1, 1 + 3) → 1 + 3,
χ̃ : (8, 1 + 3) → 1 + 1 + 2 + 2 + 2 + 2 + 3 + 3 + 3

+4 + 4 + 5, (2)

shows the existence of three singlets which can acquire a
vacuum expectation value.

We will use a bosonized language where the quark–
antiquark bilinears are replaced by scalar fields ϕ̃(1)

ab →
σab, ϕ̃

(2)
ab → σ†

ab, χ̃
(1)
ij,ab → ξij,ab, χ̃

(2)
ij,ab → ξ∗

ji,ba. The most
general isospin-conserving expectation values are

σab = σ̄δab,

ξij,ab =
1

2
√

6
ξ̄1(λk)ij(τk)ba +

1
6
√

2
ξ̄2(λ8)ijδab, (3)

where σ̄, ξ̄1 and ξ̄2 correspond to the three singlets in (2).
Here τk are the Pauli matrices and λz the Gell-Mann ma-
trices, with a sum k = 1, ..., 3. We note the presence of
two color-breaking directions ξ̄1, ξ̄2.

The physical electric chargeQ is composed of the quark
charge Q̃ (Q̃ = −2/3 for up, Q̃ = 1/3 for down) and the
color generator Qc

Q = Q̃−Qc = Q̃− 1
2
λ3 − 1

2
√

3
λ8. (4)

It is easy to check that the quark and gluons have integer
electric charge. We can also relate the physical electric
charge to isospin (I3) and interpret the color λ8-generator
in terms of standard baryon number B and strangeness S

Q = I3 +
1
6
B− 1

2
√

3
λ8 = I3 +

1
2
(B+S) = I3 +

1
2
B′. (5)

Here we use a normalization where the baryon number4
of the fermion fields is B = +1 and the “hyperons” Σ
and Λ carry S = −1. With respect to SU(2)I , S,Q and B
the six quarks carry the quantum numbers of the baryons
(p, n, Λ,Σ) (see Table 2). We note that two-flavor QCD
has two independent exact global symmetries in the pres-
ence of non-vanishing quark masses and the absence of
electromagnetism. These are B′ = B + S and Q. In the
presence of electromagnetic interactions the generator Q
will be gauged.

4 For a detailed discussion of the issue of baryon number see
[1]. The quark baryon number Bq obeys Bq = B/3
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Table 3. Charges of the gluons

Q̃ Qc Q I I3 S B B′

A3 0 0 0 1 0 0 0 0 ρ0

A1 + iA2 0 −1 1 1 1 0 0 0 ρ+

A1 − iA2 0 1 −1 1 −1 0 0 0 ρ−

A4 + iA5 0 −1 1 1/2 1/2 1 0 1 K∗+

A4 − iA5 0 1 −1 1/2 −1/2 −1 0 −1 K∗−

A6 + iA7 0 0 0 1/2 −1/2 1 0 1 K∗0

A6 − iA7 0 0 0 1/2 1/2 −1 0 −1 K
∗0

A8 0 0 0 0 0 0 0 0 ω

The surprising fact that baryons with strangeness S =
−1 (i.e. Λ,Σ) are described by up and down quarks arises
from the fact that the strangeness of the baryons has a
color component according to (5). Actually, for the
symmetry-breaking pattern that we describe here the
isospin symmetry corresponds to a subgroup of the physi-
cal SU(3) symmetry discussed for the three-flavor case in
[1]. As compared to the three flavor case it is sufficient to
leave out the states corresponding to the strange quark.
Those correspond to the baryons Ξ and a baryon singlet
S (see Table 4 below).

The gluons carry the quantum numbers of the ρ-, K∗-
and ω-mesons. Again, they describe also states with
strangeness. Their quantum numbers are displayed in Ta-
ble 3.

As a consequence of the Higgs mechanism seven out of
the eight gluons acquire a mass. This can be inferred by
inserting the vacuum expectation values (3) in the covari-
ant derivative for ξ,

Lkin,ξ = Ẑ(Dµξ)∗
ij,ab(Dµξ)ij,ab,

(Dµξ)ij,ab = ∂µξij,ab − igAik,µξkj,ab + igξik,abAkj,µ,

Aij,µ =
1
2
Az

µ(λz)ij . (6)

With (λk)ij(τk)ba = 2δiaδjb − δijδab we find

M2
ρ =

2
3
Ẑg2|ξ̄1|2,

M2
K∗ = Ẑg2

(
1
4
|ξ̄1|2 +

1
12

|ξ̄2|2
)
,

M2
ω = 0, (7)

where Mρ denotes the mass of the ρ-triplet, MK∗ the
one of the two isospin doublets K∗, K̄∗ and Mω concerns
the isospin singlet ω. In addition to global isospin sym-
metry the expectation values ξ̄1, ξ̄2 leave a local U(1)8-
subgroup of color unbroken which corresponds to the gen-
erator λ8. This is the reason for the massless ω-meson. In
the language of hadrons we may associate the correspond-
ing charge with a linear combination of strangeness S and
baryon number B,

λ8 = −
√

3S − 2√
3
B. (8)

Table 4. Charges of the strange quarks

Q̃ Qc Q I3 S B B′ S′

s1 −1/3 2/3 −1 −1/2 −2 1 −1 −1 Ξ−

s2 −1/3 −1/3 0 1/2 −2 1 −1 −1 Ξ0

s3 −1/3 −1/3 0 0 −1 1 0 −1 S0

The unbroken local abelian symmetry is a direct con-
sequence of the group structure and conserved isospin. All
possible vacuum expectation values of quark–antiquark
operators preserve the local U(1)8 symmetry, which is a
remnant of the color symmetry. Independent of the de-
tailed dynamics one therefore expects for a state were
only octets condense a massless gauge boson similar to
the photon, but with a strong gauge coupling. It is con-
ceivable that this symmetry is realized in the Coulomb
phase. If true, the existence of a massless spin 1 state could
be checked by a numerical simulation of QCD2. We note
that ξ̄1 leaves the additional U(1)8-symmetry unbroken
and therefore does not contribute to Mω, whereas an un-
broken gauged SU(2)c×U(1)c symmetry for ξ̄1 = 0, ξ̄2 �= 0
forbids a contribution of ξ̄2 to Mρ and Mω. All masses are
proportional to the strong gauge coupling g, with propor-
tionality factor associated to the wave function renormal-
ization Ẑ.

The expectation values σ̄, ξ̄1 and ξ̄2 spontaneously
break the chiral SU(2)L × SU(2)R symmetry, resulting
in three (almost) massless pions. (There are no pseudo-
Goldstone bosons transforming as kaons in the two-flavor
picture.) Chiral symmetry breaking also gives a mass to
the fermions which we associate with the baryon masses.
We write the relevant Yukawa-type interaction in the form

Ly = ψ̄ia(hσσabδij + hξξij,ab)
1 + γ5

2
ψbj

−ψ̄ia(hσσ
†
abδij + hξξ

∗
ji,ba)

1 − γ5

2
ψbj . (9)

The corresponding contributions to the masses of the nu-
cleons and hyperons

(
Σ0 = 1√

2
(u1 − d2), Λ0 = 1√

2
(u1

+ d2)
)

are

Mn = hσσ̄ − 1
3
√

6
hξ ξ̄2,

MΣ = hσσ̄ − 1
2
√

6
hξ ξ̄1 +

1
6
√

6
hξ ξ̄2,

MΛ = hσσ̄ +
3

2
√

6
hξ ξ̄1 +

1
6
√

6
hξ ξ̄2. (10)

If electromagnetic interactions are added to QCD, a
linear combination I3F + 1

6B of the previously global sym-
metries becomes gauged. As a consequence, color symme-
try breaking by the octet condensate ξ leaves now two
gauge bosons massless, corresponding to the two direc-
tions I3F + 1

6B − I3c and λ8,c. A linear combination of
them is the photon.

The appearance of the massless gluon of the unbro-
ken U(1)8-symmetry is special for the quark–antiquark
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condensates in QCD2. This phenomenon does not happen
for three light flavors. For Nf = 2 is connected to con-
served strangeness and the fact that strangeness has only
a contribution from the color generator λ8 and baryon
number. In contrast, for Nf = 3 the strangeness quantum
number also receives a contribution form a flavor gener-
ator and “strangeness locking” permits the breaking of
the local U(1)8-symmetry. As long as we only consider
quark–antiquark condensates, there is no way in two-flavor
QCD of conserving isospin in the vacuum and giving mass
to the U(1)8-gluon. For Nf = 2 we still have, however,
the possibility of condensation of diquarks or pure glu-
onic operators consistent with the physical isospin symme-
try (see below). Again, this is different from three flavors.
For Nf = 3 color-flavor locking implies that the physical
SU(3)-representation for the gluon degrees of freedom co-
incides with the SU(3)-representation. All gluonic SU(3)-
singlets must also be color SU(3)c-singlets. Singlet oper-
ators of the type Fµν

ij Fji,µν do not affect the symmetry-
breaking pattern. We conclude that despite many similar-
ities between QCD2 and QCD3 the details of spontaneous
color symmetry breaking depend critically on the number
of light quarks.

We finally demonstrate the connection between integer
electric charge and a massless ω-meson for QCD2 without
diquark condensates by a simple group-theoretical argu-
ment. The color generator λ8 can be represented as a com-
bination of isospin, baryon number and electric charge

λ8 = 2
√

3
(
I3 +

1
6
B −Q

)
. (11)

Quark–antiquark as well as gluonic operators conserve
baryon number. This implies that all gluonic operators
which conserve isospin and break the U(1)8-symmetry
necessarily violate electric charge. Indeed, the 10-dimen-
sional SU(3)c-representation (contained in the antisym-
metric product of two octets) has a SU(2)-singlet which
is charged with respect to U(1)8 (see Sect. 4). An expecta-
tion value of this singlet would give a mass to the U(1)8-
gluon. In presence of the electromagnetic gauge interac-
tion, however, such a vacuum would result in a modified
charge seen by the photon, given by Q′ = Q̃− 1

2λ3. (This
corresponds to (4) without the piece from λ8.) In conse-
quence, the physical fermions would carry electric charges
(1/6, 7/6, 2/3,−5/6, 1/6,−1/3) (cf. Table 2). Our scenario
for QCD2 leads to three interesting alternatives: if isospin
and B are conserved in the vacuum and all condensates
are scalars, either diquark condensation occurs or there
is a massless gluon or the electric charges of the baryons
are unusual. These alternatives can be tested by lattice
simulations. The perhaps favored alternative is the spon-
taneous breaking of baryon number in the vacuum by a
diquark condensate, which we will discuss next.

3 Diquark condensates

We next turn to possible diquark condensates. They are
expected to play a role at high baryon density. In con-
trast to QCD3 they can also be relevant for the vacuum

in QCD2 [8]. The simultaneous octet and diquark conden-
sation corresponds to the entry (B) in Table 1, whereas
a pure diquark condensation corresponds to (C). Scalar
diquarks are in the antisymmetric product of two quark
fields. With respect to SU(3)c × SU(2)F they transform
as (3̄, 1) + (6, 3). We first consider the antitriplet

(δ̃L,R)i = (ψL,R)ajβc
βγ(ψL,R)bkγεijkεab, (12)

with β, γ spinor indices and cβγ the antisymmetric charge
conjugation matrix. The corresponding scalar fields δL,R ∼
δ̃L,R transform as a 3̄ under color and a singlet under fla-
vor. Being flavor singlets, the expectation values of δL,R
cannot contribute to the breaking of the global SU(2)F -
flavor symmetry or the chiral symmetry SU(2)L×SU(2)R.
Unlike the case for three flavors, they cannot induce color
flavor locking for two-flavor QCD. Nevertheless, they can
contribute to the breaking of color. In the presence of octet
condensates ξ̄1, ξ̄2 the expectation value of δL,R presum-
ably favors the isospin-conserving direction.5 There is one
isospin singlet for both δL and δR and parity is conserved
for

δLi = δRi = δ̄1δi3. (13)

In addition to the global SU(2)F symmetry this expec-
tation value preserves a local SU(2)c-subgroup of color.
Therefore δ̄ �= 0 contributes to the mass of the K∗- and
ω-vector mesons, but not to the ρ-mesons. From the co-
variant kinetic term

Lkin,δ = Zδ{(DµδL)∗
i (DµδL)i + (DµδR)∗

i (DµδR)i},
(Dµδ)i = ∂µδi + igδjAji,µ, (14)

one finds

M2
ρ = 0,

M2
K∗ =

1
2
Zδg

2|δ̄1|2,

M2
ω =

2
3
Zδg

2|δ̄1|2. (15)

The expectation value (13) induces a spontaneous
breaking of baryon number. It also breaks the local U(1)8-
symmetry which is preserved by ξ̄1 and ξ̄2. In consequence
the ω-meson related to the λ8-generator of SU(3)c be-
comes massive in a situation where ξ̄1 �= 0, ξ̄2 �= 0, δ̄ �= 0.
In this setting all gluons have acquired a mass. This is
easily seen by adding the contributions (7) and (15). A
diquark condensate in the vacuum of QCD2 is possible

5 We note the possibility of an isospin violating alignment of
the expectation values of δL,R which breaks color completely.
The orthogonal expectation values δLi = δ̄Lδi1, δRi = δ̄Rδi2

induces a gluon mass matrix M2
yz = Zδg

2δ̄2
(

4
3δyz + 2√

3
dyz8

)

or M2
ρ = 2Zδg

2δ̄2, M2
K∗ = Zδg

2δ̄2, M2
ω = 2

3Zδg
2δ̄2. All gluons

are massive, with an order M2
ρ > M2

K∗ > M2
ω reversed as

compared to the realistic QCD vacuum. For this alignment
the standard parity transformation δL ↔ δR is spontaneously
broken and one has to investigate if another parity like discrete
symmetry survives
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since it preserves a new color-flavor-locked baryon num-
ber

B′ = Bq − 1√
3
λ8, (16)

with Bq = B/3 the quark baryon number. In terms of the
hadronic quantum numbers B and S this reads

B′ = B + S. (17)

In consequence, switching on the expectation value δ̄ pre-
serves the total number of conserved global abelian sym-
metries. It shifts the global charge from B to B + S and
breaks the local U(1)8 symmetry. We conclude that the
formation of a δ̄ condensate does not lead to a massless
Goldstone boson and to superfluidity. Regions in the QCD
phase diagram with δ̄ = 0 and δ̄ �= 0 can be analytically
connected. The formation of a δ̄-condensate looks similar
to the phase transition in the abelian Higgs model or to
the onset of superconductivity by the formation of Cooper
pairs. Only the photon is replaced by the ω-meson. If, in
addition, one gauges the electromagnetic U(1) symmetry,
the true photon remains massless since the δ-condensate
carries zero electric charge. Only one of the two massless
gauge bosons for δ̄ = 0 gets a mass for δ̄ �= 0.

The diquark contribution to the baryon masses follows
from the Yukawa coupling

L = hδεijkεab(δ∗
LiψLajcψLbk + L ↔ R + c.c.). (18)

This yields a Majorana-type mass term for the hyperons
Σ and Λ

L = hδ δ̄1{Λ0
LcΛ

0
L − (Σ+

L cΣ
−
L +Σ−

L cΣ
+
L +Σ0

LcΣ
0
L)

+ L ↔ R + c.c.}. (19)

We next turn to the possible condensation of the color
sextet diquark. The sextet diquark is symmetric in both
color and flavor indices

(β̃L,R)ij,ab (20)

=
1√
2

{
(ψL,R)aiβc

βγ(ψL,R)bjγ + (ψL,R)ajβc
βγ(ψL,R)biγ

}
.

The associated scalar field β
(L,R)
ij,ab carries again two units

of baryon number B = 2 and transforms under SU(2)I as
1 + 2 + 3 + 3 + 4 + 5. It therefore contains one singlet

β
(L)
ij,ab = β

(R)
ij,ab =

1
2
√

2
β̄(δiaδjb + δjaδib). (21)

The contribution of β to the mass of the gauge bosons
reads (with wave function renormalization Zβ)

M2
ρ = 2Zβg

2β̄2, M2
K∗ = Zβg

2β̄2,

M2
ω =

2
3
Zβg

2β̄2. (22)

All local symmetries are spontaneously broken and all
gauge bosons are massive. As for the case of the δ-con-
densate, the β-condensate leaves the global symmetry as-
sociated to B + S unbroken. Again, a β-condensate does

not lead to a massless Goldstone boson and to superflu-
idity. Actually, the fields δ̄ and β̄ in (13) and (21) carry
the same abelian quantum numbers and are both isospin
singlets. As before, a gauged electromagnetic symmetry
remains preserved by a β-condensate. In the presence of
an octet condensate the antitriplet and sextet can mix.
More precisely a color octet and antitriplet diquark con-
densate induce a sextet diquark condensate by a linear
term in the effective potential for the sextet. This term
is generated by a cubic interaction between χ, δ and β.
Similarly, 〈χ〉 �= 0 and 〈β〉 �= 0 induce 〈δ〉 �= 0.

In summary, the Higgs picture for two-flavor QCD dif-
fers in two important aspects from the three-flavor case.
First, the vacuum either admits diquark condensation or
one finds a massless gauge boson in the vacuum (in ad-
dition to the photon). This holds if electric charges are
integer and isospin is conserved. Second, there is no mass-
less Goldstone boson in presence of diquark condensates.
Therefore no superfluidity occurs in the high-density
phase if isospin is conserved.

4 Gluonic condensates

We conclude the discussion of isospin-conserving states in
QCD2 by a brief listing of possible color-breaking gluon
condensates. As long as they conserve SU(2)I and B+S,
they are necessarily induced in presence of color-breaking
quark–antiquark and diquark condensates. The simplest
SU(2)I -singlet operator is found in the octet

fij ∼
(
Fµν

ik Fkj,µν − 1
3
Fµν

lk Fkl,µνδij

)
. (23)

With respect to SU(2)I it decomposes as 8 → 1+2+2+3,
with a possible singlet expectation value

〈fij〉 = f̄(λ8)ij . (24)

This remains neutral with respect to U(1)8 and therefore
cannot break this local symmetry. Nevertheless, it gives a
contribution to MK∗ , i.e. it contributes

M2
ρ = 0 , M2

ω = 0 , M2
K∗ =

3
2
Zfg

2f̄2. (25)

The other non-trivial candidate in the (symmetric) prod-
uct of two-field strength tensors is the 27-dimensional rep-
resentation

sijkl ∼ Fµν
ij Fkl,µν − 1

3
(Fµν

imFml,µνδjk

+Fµν
kmFmj,µνδil − 1

3
Fµν

mnFnm,µνδijδkl

)
,

sijjl = sijki = 0. (26)

It contains one SU(2)-singlet which is again invariant with
respect to U(1)8 and contributes to the gluon masses sim-
ilar to (25).

The lowest dimension SU(3)c-representation which
contains a SU(2)c-singlet with non-zero U(1)8-charge and



258 C. Wetterich: Phase transition between three- and two-flavor QCD?

which has triality zero is the complex 10. It is contained in
the antisymmetric product of two octets. A scalar formed
from glue in the 10 + 1̄0 representation is

aijkl ∼ Fµν
imF

ρ
mj,ν Fkl,ρµ − Fµν

kmF
ρ

ml,ν Fij,ρµ (27)

−1
3
Fµν

nmF
ρ

mn,νFkl,ρµδij +
1
3
Fµν

nmF
ρ

mn,νFij,ρµδkl,

with aijkl = −aklij , aijjl = aljkl = 0. An expectation
value of the SU(2)-singlets in aijkl would break U(1)8 and
give a mass to the corresponding gauge boson. A conden-
sate of such a higher-order gluonic operator would also
break B + S. Only SU(2)I and baryon number remain
as unbroken global symmetries of the vacuum if such op-
erators acquire an expectation value. After a coupling to
electromagnetism the baryons would get the non-integer
charges corresponding to Q′ = Q̃ − 1

2λ3 (see Table 2). In
the presence of such a B+S-violating condensate the oc-
currence of a diquark condensate in the high-density phase
would break the only global symmetry, i.e. baryon num-
ber. (B+S is not “available” for a residual global symme-
try any more.) The resulting Goldstone boson would lead
to superfluidity. For completeness we have listed the char-
acteristics of a-condensates in Table 1 (entries F, G). We
will not consider them any further since fractional electric
charges in the vacuum seem not very attractive.

5 Transition between QCD3 and QCD2

The vacuum of QCD with three light flavors of quarks
exhibits the vector-like SU(3)-symmetry of the “eightfold
way”, if the quark masses are all equal. No diquarks can
condense since this would break either baryon number or
the SU(3) symmetry. The only non-trivial condensate is
a color octet quark–antiquark pair [1]. The ground state
of realistic QCD presumably resembles three-flavor QCD
and does not exhibit a diquark condensate either. This
follows from the fact that the global symmetries corre-
sponding to baryon number and strangeness are realized
in a standard way. Both B and S are conserved quantum
numbers, in contrast to the case of diquark condensation.

For a small mass difference between the strange quark
and the two light quarks we expect a splitting of the
masses of particles within a given SU(3)-multiplet accord-
ing to their isospin representation. The color singlet and
octet q̄q-condensates involving strange quarks add to (3)
a contribution6

∆σab = σ̄sδa3δb3,

∆ξij,ab =
1

2
√

6
ξ̄3(λ4

ijλ
4
ba + λ5

ijλ
5
ba + λ6

ijλ
6
ba + λ7

ijλ
7
ba)

− 1
3
√

2
ξ̄4λ

8
ijδa3δb3. (28)

6 We have omitted here one more electrically neutral SU(2)I -
singlet contained in the color octet, ξ5. The expectation value
ξ̄5 vanishes in the limit of equal quark masses

The additional condensates σ̄s, ξ̄3, ξ̄4 involve the third fla-
vor index7 and will be denoted as “strange components”
of the color singlet and octet. Combining the “strange”
and “non-strange” octet contributions to the vector me-
son masses one obtains

M2
ρ = Ẑg2

(
2
3
|ξ̄1|2 +

1
3
|ξ̄3|2

)
,

M2
K∗ = Ẑg2

(
1
4
|ξ̄1|2 +

1
12

|ξ̄2|2 +
1
2
|ξ̄3|2 +

1
6
|ξ̄4|2

)

+
3
2
Zfg

2f̄2,

M2
ω = Ẑg2|ξ3|2. (29)

In the SU(3)-symmetric limit ξ̄1 = ξ̄2 = ξ̄3 = ξ̄4, f̄ = 0
the masses in the vector meson octet are all degenerate
[1]. We observe that for ξ̄1 = ξ̄3 the masses of the ρ-
mesons and ω-meson remain equal. For ms �= mu,d one
expects that also colored gluon condensates of the type
(24) are induced. If the octet condensate ∼ ξ̄3 − ξ̄1 is sup-
pressed as compared to the other SU(3)-breaking conden-
sates, we find the phenomenologically interesting relation
M2

ω ≈ M2
ρ ,M

2
K∗ > M2

ρ .
It is, of course, possible to move gradually from three-

flavor QCD to two-flavor QCD by increasing the mass
of the strange quark. In this process the various SU(2)I -
singlets acquire different expectation values. For a small
deviation from SU(3) this leads to a mass splitting in the
SU(3)-multiplets according to strangeness. In the limit
ms → ∞ the condensates involving strange quarks vanish.
In this limit the ω-meson would become massless in the
(naive) Higgs picture for any vacuum without a diquark
condensate. In this case it is conceivable, but not likely
that a phase transition occurs as a function of ms where
the local U(1)8-symmetry gets restored for large enough
ms and the ω-meson becomes massless. At this point the
reader should be warned, however, that the naive Higgs
picture with bosonic propagator approximated by (q2 +
m2)−1 could be quite misleading in presence of strong cou-
plings. It is well possible that the propagator for small mo-
menta and m2 = 0 looks very different from 1/q2−, e.g.,
1/q4− such that the analytic continuation to Minkowski
space has no pole. In this case no propagating gluon-type
degree of freedom would occur and there would be no
massless ω-meson. In this sense the “naive” Higgs pic-
ture underlying our present discussion may only be valid
as long as the effective bosonic mass m2 is large enough.
In view of the fact that couplings are strong and no global
symmetries are altered forms → ∞ we find a phase transi-
tion not very likely in the absence of a diquark condensate
in the QCD2 vacuum.

From the point of view of a possible phase transition
the perhaps more interesting alternative is characterized
by a vacuum-diquark condensate (13) in the two-flavor
limit ms → ∞. In this event two scenarios imply a phase
transition between QCD3 and QCD2 as a function of ms.

7 Remember that in (3) the flavor index takes only the values
1,2 whereas now it runs from 1 to 3
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Either the diquark condensation sets in in competition
to the “strange” octet components. At the transition the
conserved quantum numbers jump from B and S to the
new charges B′ and S′. Or their could be an intermedi-
ate phase with both diquarks and all components of the
qq̄-octet condensing. This intermediate phase would be
signalled by superfluidity connected to the Goldstone bo-
son arising from a reduction of the total number of global
symmetries. In the latter case a phase transition would
be mandatory since the global symmetries change as a
function of ms.

Keeping in mind our cautious remarks we next investi-
gate the transition between large and small ms within the
naive Higgs picture. From the point of view of QCD2 we
may first add a heavy strange quark to QCD2. This will
not affect the low energy dynamics and the condensates
of QCD2. It introduces, however, a new global symmetry
with conserved quantum number S′ for the heavy quarks,
i.e. S′ = −1 for all strange quarks and S′ = 0 for up and
down quarks. The quantum numbers of the s-quark states
in the hadronic language can be found in Table 4, which
supplements Table 2.

We start with the case where the vacuum of QCD2
exhibits a non-vanishing diquark condensate. In the pres-
ence of this diquark condensate the conserved quantum
numbers for large ms are Q,B′ and S′. For small ms, the
vacuum must switch, however, to a state which conserves
Q,B and S, similar to QCD3. As we have mentioned, such
a state is not compatible with a diquark condensate. The
phase transition as a function of ms corresponds therefore
to the disappearance of the diquark condensate and to an
associated change in quantum numbers of states in the
low energy spectrum. It is supposed to happen for some
critical value ms,c. This change in the quantum numbers
concerns all “strange baryons”, i.e. not only the ones cor-
responding to strange quarks (Table 4), but also four of
the “light quark states” listed in Table 2. It is notewor-
thy that the proton and neutron or the ρ-mesons are not
affected by this switch in quantum numbers.

The switch in quantum numbers from B′ and S′ to B
and S may either proceed directly or via an intermediate
superfluid or Coulomb-like phase. The reason is the mis-
match in quantum numbers for the diquark condensate
and the “strange” component of the octet q̄q-condensate.
A transition where a non-zero diquark condensate is re-
placed by non-zero strangeness components of the octet
condensate at the critical strange quark mass leads to a
jump in the conserved charges. If the ω-meson is massless
for ms,c or even for a whole interval of the strange quark
mass, no discontinuity is necessary. In the intermediate
Coulomb phase the U(1)8 local gauge supersymmetry as-
sociated to the ω-meson allows one to rotate freely be-
tween (B,S) and (B′, S′). Both pairs of quantum numbers
are conserved. The limits of large and small ms outside
this “Coulomb” region correspond to different lockings of
the λ8 generator, whereas in the Coulomb region it is un-
locked. (Recall that beyond the naive Higgs picture the
“Coulomb region” may not have a massless gluonic exci-
tation.) If the change from the diquark condensate to the

condensation of the strange components of the octet pro-
ceeds without an intermediate “Coulomb region”, it may
be most likely a discontinuous first-order phase transition.
Finally, if there is an intermediate range of ms where both
the diquark condensate and the strange component of the
octet condensate are non-zero, their simultaneous pres-
ence leads to the breaking of one of the two global sym-
metries. This corresponds to an intermediate superfluid
phase.

Finally, we discuss the perhaps less likely possibility
of a phase transition without diquark condensation in the
vacuum of QCD2. In this case one starts at high ms with
a Coulomb-like phase where both (B′, S′) and (B,S) are
simultaneously conserved. The transition at ms,c is then
characterized by the onset of a non-vanishing vacuum ex-
pectation value of the strange components of the octet.
This gives a mass to the ω-meson and the transition shows
similarities to the transition in a superconductor.

All versions of the transition show a remarkable behav-
ior of the fate of the strange baryons as ms increases from
zero to large values. Only the Ξ-baryons and the singlet
S0 become very heavy and decouple from the effective low
energy theory, similar to the baryons involving the heavy
quarks c, b and t [1]. This decoupling does not take place
for the baryons Σ and Λ0 and for the K∗-vector mesons.
These particles remain in the spectrum of light particles
even in the limit ms → ∞. If diquark condensation sets in
for large ms, their properties become unusual since they
cannot be built any more from a finite number of quarks
in the non-relativistic quark model [8].

This unusual behavior of the K∗, Σ and Λ particles
may give a hint for where to look for a possible transition
in a lattice simulation. Indeed, the masses and couplings
of the pseudoscalars (π,K, η, η′), the ρ-vector mesons and
the nucleons (p, n) may depend rather smoothly on ms

(with the possibility of minor jumps in case of a discon-
tinuous transition). In particular, we have seen that the
masses of p, n, ρ, π are not affected by a diquark conden-
sate. The qualitative changes between ms < ms,c and
ms > ms,c are rather expected in the (K∗, Σ, Λ) sector.
Here one may find some unusual behavior as the mass dif-
ference ms − mq increases from (realistic) values within
the approximate validity of the SU(3) flavor symmetry to
large values. (Note that the relevant parameter is actually
ms−mq with mq the mass of the up/down quark. It is im-
portant to keep this in mind since lattice simulations with
very small mq are not feasible at the present moment.)
The present simulations with three dynamical quarks [12]
are presumably within the range of approximate SU(3)
symmetry. It would be interesting to increase ms with
fixed mq and to monitor the behavior of (K∗, Σ, Λ).

We observe, however, that for ms < ms,c the “dressed
gluons” K∗ can mix with the corresponding quark–anti-
quark vector states ∼ q̄γµq and similar for the “dressed
quarks” Σ,Λ which can mix with three quark states.8 This
mixing may be forbidden for ms > ms,c, as in the case of
diquark condensation. The correlation functions for the

8 See [1] for a detailed discussion of the quantum numbers of
the dressed gauge-invariant states
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Table 5. Possible isospin-conserving high-density transition in
QCD2

Vacuum High “Phase” High Massless
density transition density gluon in

superfluidity vacuum

8 8 + 3̄, 6 abelian no yes
Higgs

8 + 3̄, 6 8 + 3̄, 6 continuous or no no
first order

usual q̄γµq or qqq operators may therefore not reflect any
more the states that we have denoted by (K∗, Σ, Λ) in the
Higgs picture. This feature may render a direct observa-
tion of a transition rather difficult as long as one concen-
trates on correlation functions of operators like q̄γµq and
qqq. In case of diquark condensation in the vacuum a more
direct access to the particular features of such a ground
state would become possible if local gauge-invariant op-
erators corresponding to the states K∗, Σ, Λ can be con-
structed. These must be non-linear in the quark and gluon
fields since no mesonic state with half integer isopin can
be constructed as a finite power of quark and gluon fields.
This also holds for Σ and Λ which have even isospin and
should only involve contributions with an odd number of
fermions.

6 High-density phase transition in QCD2

The possible phase transitions between the vacuum and
the high-density state of QCD2 depend on the condensates
in the vacuum and the high-density phase. We summa-
rize in Table 5 the possibilities for the case of an isospin-
conserving high-density phase with octet q̄q- and diquark
condensate. The global symmetries of the high-density
state of QCD2 and the vacuum are the same. In this event
a continuous transition becomes possible. We distinguish
the two alternatives without and with a diquark conden-
sate in the vacuum ((A) and (B) in Table 1). For the lat-
ter case there is no obvious reason for a phase transition.
On the other hand, if the transition to the high-density
phase is characterized by the onset of diquark condensa-
tion one may expect a transition similar to the abelian
Higgs model. This could be a first-order transition, but a
second-order transition or a continuous crossover are also
conceivable [13]. For a weak enough transition one expects
the same universality class as for type II superconductors.

One may argue, however, that these scenarios are too
simple. It seems likely that effective attractive interactions
between the nucleons lead to an instability of the isospin-
conserving states discussed so far. This instability is re-
lated to the pairing of nucleons. There is no contribution
to a Majorana-like mass term for the proton and neutron
from the diquark condensates δ̄ (cf. (19) or β̄). In fact, s-
wave and spin 0 nucleon pairs belong to an isospin triplet.
This follows from the Pauli principle since the color part of
the corresponding diquark operator is symmetric (proton

and neutron are both quarks of the third color, see Ta-
ble 2) and the spin part is antisymmetric. The dinucleon
operator must therefore be symmetric in flavor, and this
corresponds to an isospin triplet. Since the isospin singlet
diquarks δ̄ and β̄ cannot stabilize an instability in the nu-
cleon pair channel, it seems likely that the condensation
of nucleon pairs or diquarks of the third color produces
the stabilizing gap.

We suggest that isospin is spontaneously broken in the
high-density phase of QCD2 as well as in nuclear matter.
A candidate is a condensation of a diquark

〈d3cd3〉 �= 0. (30)

In the language of baryons this corresponds to a dineu-
tron condensate. Such a condensate has interesting con-
sequences. First, the spontaneous breaking of isospin pro-
duces three massless Goldstone bosons. In contrast to the
pions they are scalars with the quantum numbers of the
a-mesons. In the presence of a non-vanishing mass differ-
ence for the (current) mass of the up and down quark (or
in the presence of electromagnetism) the global isospin
symmetry is explicitly broken. As a consequence, the two
charged a±-mesons become pseudo-Goldstone bosons and
acquire a small mass, similar to the pions. In contrast,
the third component of isospin I3 remains an exact sym-
metry even in the presence of quark masses and electro-
magnetism. Its spontaneous breaking by the dineutron
condensate (30) necessarily leads to an exactly massless
Goldstone boson and therefore to superfluidity. Second,
also the baryon number B′ is not conserved by the dineu-
tron condensate. The only unbroken generator is I0 + 1

2B
′

and corresponds to conserved electric chargeQ. The simul-
taneous presence of three light pseudoscalars π and three
light scalars a is a characteristic signal for our scenario
with spontaneous breaking of the chiral and vector-like
global SU(2)-symmetries at high density.

Protons and neutrons are presumably the lightest
fermionic states in the vacuum of QCD2. As the chem-
ical potential for the conserved baryon number increases
beyond a critical value the onset of the dineutron conden-
sate triggers a true phase transition. The order parameter
is related to the spontaneous breaking of the global sym-
metry with generator I3. This is the “gas–liquid” transi-
tion to nuclear matter. If this phase transition would be of
second order, it should belong to a universality class char-
acterized by the breaking of SU(2) to U(1) (similar to
O(3)-Heisenberg models) with small symmetry violations
due to mu �= md. The fermionic fluctuations presumably
play a role for this universality class. It is an open issue
if for still higher values of the chemical potential another
phase transition to high-density quark matter is connected
to the changes in the isospin singlet diquarks shown in Ta-
ble 5 or if the transition from nuclear to quark matter is
continuous.

In the following we summarize the main features of
the high-density phase transition for the case where spon-
taneous isospin symmetry breaking is absent or can be
treated as a small correction.
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(i) At high density complete color flavor locking is possible
such that all gluons acquire a mass [9]. This can be real-
ized by the same combination of two condensates as in the
vacuum. If isospin is preserved there is no Goldstone bo-
son and the high-density phase is not a superfluid. Chiral
symmetry remains spontaneously broken at high density.
Without spontaneous isospin breaking the transition be-
tween the vacuum and the high-density state of QCD2
would not involve any change in the realization of sym-
metries if diquarks condense already in the vacuum. This
leaves the possibilities of an analytic crossover or a first-
order phase transition.
(ii) In an alternative scenario for the QCD vacuum the di-
quark condensate could vanish. In this case not all gluons
can acquire a mass. There remains always an unbroken
abelian U(1)c gauge symmetry which is part of SU(3)c.
Its gauge boson carries the quantum numbers of the ω-
meson and remains massless. If, in the second scenario,
the transition to QCD at high baryon density corresponds
to condensation of a diquark which preserves isospin, one
infers that the U(1)c-gauge symmetry gets spontaneously
broken in the transition to the high-density phase. The
ω-meson acquires a mass. If isospin is conserved, the gen-
eral characteristics of the high-density phase transition for
the second scenario may resemble the transition for the
abelian Higgs model [13]. This may lead to a first-order
phase transition. The remarks on the limitations of the
naive Higgs model from the preceeding section apply here
as well. In particular, it is conceivable that no discontinu-
ity occurs and the vacuum is analytically connected to the
high-density state. The number of global abelian symme-
tries is the same with and without isospin singlet diquark
condensates. Therefore no Goldstone boson is generated
by an isospin-conserving diquark condensation in a tran-
sition to the high-density phase.

7 Gluodynamics
Finally, we turn to pure QCD without quarks. A descrip-
tion in the Higgs picture with spontaneous breaking of
color may still be possible. Of course, it is not related
to color-flavor locking any more, since there are no flavor
symmetries. We present here a first attempt which demon-
strates that suitable condensates can give a mass to all
gluons. The resulting spectrum for the glueballs is, how-
ever, not very satisfactory. Our example should therefore
not be interpreted as a proposal for the ground state of
pure QCD but rather as an exploration in which directions
one might go. For our first trial we follow the same phi-
losophy as for the fermion bilinears and introduce scalar
fields fij and sijkl for the color nonsinglets contained in
FµνFµν (cf. (23) and (26)). We assume that the effective
action for these scalar fields,

L =
1
2
Zf (Dµf)ij(Dµf)ji

+
1
2
Zs(Dµs)ijkl(Dµs)jilk + U(f, s), (31)

has a potential U with minimum for non-zero expectation
values of f and s (see [14] for a similar treatment of the

color singlet). We want to demonstrate here that for suit-
able expectation values all gluons become massive and can
be associated with vector glueballs.

We first consider the color octet fij = (f†)ij , fii = 0.
By appropriate SU(3)-transformations its vacuum expec-
tation can be brought to the generic form

〈fij〉 = f̄(λ8)ij + t̄(λ3)ij . (32)

Such an expectation value cannot give mass to all gluons –
the A3- and A8-vector mesons remain massless. For t̄ �= 0
isospin symmetry is not conserved and the vector meson
masses split according to

M2
1 = M2

2 = 2Zfg
2t̄2, M2

3 = 0, (33)

M2
4 = M2

5 = M2
6 = M2

7 =
1
2
Zfg

2(3f̄2 + t̄2), M2
8 = 0.

Giving a mass to all gluons therefore needs one more
non-vanishing expectation value and we consider here a
particular direction in the 27-dimensional representation
sijkl = s∗

jilk, namely

〈sijkl〉 = s̄

(
δikδjl − 1

3
δilδjk

)
. (34)

This adds a mass term to the gluons corresponding to the
symmetric Gell-Mann matrices

M2
1 = M2

3 = M2
4 = M2

6 = M2
8 = 12Zsg

2s̄2,

M2
2 = M2

5 = M2
7 = 0. (35)

Combining (35) with (34) all gluons have acquired a mass.
We also observe the split between M2

1 and M2
2 etc.

We would like to associate the massive gluons with vec-
tor glueballs. Together with the scalar glueballs described
by f, s and a corresponding color singlet they would be
expected to dominate the low energy spectrum of pure
QCD if the vacuum can be characterized by (32) and (34).
(Spin 2 glueballs can be described by introducing addi-
tional fields for operators like F ρ

µ Fρν .) In order to differ-
entiate between the discrete transformation properties of
the glueballs we need the action of the parity transforma-
tion and charge conjugation

P : A0 → A0, Ai → −Ai, C : Aµ → −AT
µ . (36)

where P is accompanied by a coordinate reflection. The
“symmetric gluons” A1, A3, A4, A6, A8 transform as 1−−
vector glueballs, whereas the “antisymmetric gluons”
A2, A5, A7 correspond to 1−+ vector glueballs.

For the scalars we exploit

P : F ij → F ij , F 0j → −F 0j , fij → fij ,

sijkl → sijkl, (37)

C : Fµν → −(FT)µν , fij → fji , sijkl → sjilk.

This shows that the expectation values (32) and (34) in-
deed conserve P and C. The scalar glueballs consist of
0++ and 0+− states. The detailed mass spectrum of the
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vector and scalar glueballs depends on the properties of
the effective potential U(f, s) and may involve expecta-
tion values beyond those considered in (32) and (34). The
effective action (31) with condensates (32) and (34) nev-
ertheless predicts a selection rule, namely the absence of
1++, 1+−, 0−+ and 0−− states among the lightest glueball
states. This has to be confronted with the results of lat-
tice simulations [15] which find the lightest glueball states
(with increasing mass) as 0++, 0−+, 2++, 1+−. The lack
of agreement shows that our first attempt has not been
successful. Since the failure is linked to the action of the
discrete symmetries P and C and the rotation group on
the gauge fields Aµ, it concerns all other possible conden-
sates which preserve these symmetries as well. An interest-
ing way out of this dilemma may combine rotations with
gauge symmetries or similar for the discrete symmetries,
corresponding to a type of “color-Lorentz” or “color-spin”
locking [16].9

Of course, it is not necessary that gluodynamics ad-
mits a Higgs description. It is well conceivable that the
gluon propagator cannot be characterized by a mass term
generated from “spontaneous symmetry breaking”. This
does not mean that the gluons will manifest themselves
as massless excitations. The gluon propagator may sim-
ply admit no particle pole.10 In any case, we expect that
the mechanism which removes the perturbatively massless
gluons from the very low momentum spectrum is very dif-
ferent for gluodynamics and for realistic QCD3. We there-
fore emphasize that the role of the gluons and glueballs in
realistic QCD3 with three light quark flavors is quite dis-
tinct from gluodynamics. In our Higgs picture of realistic
QCD the gluons are associated with the (ρ,K∗, ω)-mesons
and do not correspond to glueball states. Glueballs play
an important role in the low energy spectrum of gluody-
namics, whereas for QCD3 they may only appear as some
higher excited states. In our picture the origin of this dif-
ferent role of the gluons and glueballs are the different
patterns in the spontaneous breaking of the color symme-
try.

8 Transition to gluodynamics
and heavy quark potential

Our discussion of gluodynamics in the previous section
raises the question what happens if the mass off all three
light quarks is increased simultaneously. For simplicity we
consider an equal mass m for the up, down and strange
quarks. For large enough m the low momentum sector
is characterized by gluodynamics. We therefore expect a
transition from realistic QCD3 to gluodynamics as m in-
creases from small to large values. As we have discussed
in the previous section this should be associated with a

9 See [17] for a discussion of color-spin locking for one-flavor
QCD at high density
10 These statements are meaningful only for some appropriate
gauge fixing. On the other hand, it is not easy to see why
a particle pole in a fixed gauge would not correspond to a
physical particle in a gauge invariant setting

change of the effective infrared cut-off. Indeed, one may
imagine that the infrared cut-off for QCD3 provided by the
octet induced gluon mass competes with some other, not
yet well identified cut-off which is relevant for gluodynam-
ics. We propose that for small enough m the octet conden-
sate sets the largest IR-scale and the effective cut-off for
gluodynamics is therefore ineffective. For example, a possi-
ble non-trivial momentum dependence of the gluon prop-
agator for “massless” gluons may not get realized since
the fluctuations responsible for it are cut off by the gluon
mass term. On the other hand, for m above some criti-
cal value mcr the IR cut-off of gluodynamics dominates.
In turn, it may cut off the fluctuations that could be re-
sponsible for the octet condensate as, for example, the
large size instantons [4]. For very large m the color octet
q̄q-bilinear simply plays no important role. The “switch”
between the relevant cut-offs in some mass region around
mcr may be a sharp or smooth crossover since no global
symmetries are affected. It would be interesting to have at
least a rough idea about the value of mcr. It seems reason-
able that pion and kaon masses below 200–300 MeV are
already close to the chiral limit and therefore correspond
to m < mcr. On the other hand, for both pseudoscalar
and vector masses above 1 GeV one is presumably in the
“heavy quark region” m > mcr.

Lattice simulations [12] show a rather smooth behav-
ior of the spectrum if the pseudoscalar masses are varied
between 300 MeV and 1 GeV. This is consistent with a
smooth crossover and seems to exclude any phase transi-
tion between QCD3 and gluodynamics. We find it not un-
likely that the crossover region where the effects of octet
condensation start to become important corresponds to
pseudoscalar masses in the vicinity of 500 MeV. As a con-
sequence, this mass region would not yet belong to the
range where chiral perturbation theory applies. One may
wonder where to expect the most prominent signs of the
octet condensation once m decreases below mcr. One is
perhaps the influence of the octet on the value of fπ. An-
other one concerns the quark mass dependence of the vec-
tor meson masses. The first involves the details of the
interplay between the octet and singlet q̄q contribution as
well as the quark mass dependence of the pseudoscalar
wave function renormalization. The second needs an un-
derstanding of the mixing between gluons and q̄γµq.

Another interesting issue is the shape of the heavy
quark potential (for c or b quarks). Indeed, for m suffi-
ciently large we expect a linearly rising potential V (r) in
a certain region of r, while for very large r the potential
flattens due to string breaking. The slope of the linear
rise is associated to the string tension. On the other hand,
there may be a region of small m for which the linearly
rising piece in the potential is absent. It is an interest-
ing hypothesis that the potential could be described in
this region by a naive Higgs picture with a Yukawa type
potential

∂V (r)
∂r

=
4α̂s(r)

3r2
exp(−M̄ρr). (38)

Here M̄ρ is the gluon mass associated to an average mass
of the vector mesons (ρ,K∗, ω) and α̂s(r) corresponds to
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some suitably defined strong fine structure constant. The
value of M̄ρ depends on m and the precise shape of αs(r)
is influenced by M̄ρ for the region r ≥ M̄−1

ρ .
We point out that the string picture and the Yukawa

potential are not incompatible – this reflects the dual-
ity between a confinement and a Higgs description. For
a small enough quark mass m it is conceivable that V (r)
can both be described by the Yukawa potential (38) with
reasonable α̂s(r) and by a string-breaking picture. On the
other hand, for largem the Yukawa description is expected
to break down and only the string picture remains valid. In
the limit m → ∞ one then recovers gluodynamics without
string breaking.

Let us first discuss the qualitative behavior of V (r) for
very large r in the string picture. For finite m there will
be a “string-breaking scale” r−1

B such that the potential
approaches quickly a constant for r > rB. The approach
to the constant is expected to be exponential:

∂V

∂r
=

∑
i

ci(r) exp(−Mir). (39)

For large enough r (39) will be dominated by the masses
Mi of the lightest mesons which are exchanged between
heavy quarks (or heavy charmed or beauty baryons or
mesons). Neglecting the pions and other pseudoscalar
mesons (whose contribution should also be added to (38))
this is precisely the behavior of (38) with Mi = M̄ρ. For
very large r beyond the string-breaking distance rB we
expect always a Yukawa type force, independent of the
precise mechanism generating the meson masses. This re-
gion in the potential therefore finds a similar description
in the Higgs picture and the string-breaking picture.

A Yukawa type description is excluded, however, if the
string-breaking distance rB is large enough, say r−1

B �
300 MeV or rB � 0.7 fm. Here we define rB as the up-
per end of a range r < rB for which ∂V/∂r ≈ σ, with
σ the constant string tension. In fact, for M̄ρrB � 1 one
concludes that there exists a range in r where the po-
tential is linearly rising and simultaneously M̄ρr � 1.
This is in contradiction to the exponential suppression
for the “pure Yukawa potential” (38). On the other hand,
for r−1

B → 400 MeV the linear piece in the potential dis-
appears. In this range of r the exponential suppression
due to the mass is not yet dominant and the naive Higgs
picture with Yukawa potential (38) could become valid.

For large enoughm the string-breaking distance rB can
be roughly estimated from a simple energy argument. The
potential energy for the separation of two heavy quarks
with mass mH is V = σr. The string will break once
2mH + σr is large enough in order to produce twice the
mass mB of a heavy-light meson (e.g. D- or B-meson).
This yields

rB ≈ 2(mB −mH)
σ

. (40)

For very large m one has mB ≈ mH + m and therefore
M̄ρrB = 2mM̄ρ/σ. Simplifying further M̄ρ ≈ 2m yields
as a condition for m > mcr the inequality 2m � √

σ or
m � 200 MeV. This simple estimate may become valid

for m � 500 MeV. Present lattice simulations with pion
masses above 300–400 MeV have seen no sign of string
breaking yet (rB � 1.5 fm). On the other hand, for small
m the difference mB −mH ≈ aΛQCD is dominated by glu-
onic effects that remain non-zero even in the chiral limit
m → 0. For mB − mH ≈ (200–500) MeV, which may be
a realistic range, one finds r−1

B ≈ (500–200) MeV. For the
upper value r−1

B ≈ 500 MeV it seems questionable if one
can observe a linearly rising piece of the heavy quark po-
tential at all, whereas for r−1

B ≈ 200 MeV this should be
possible. We conclude that it is indeed conceivable that for
realistic QCD3 a Yukawa description (38) becomes valid.
The possible dual description of the heavy quark potential
either by string breaking or by a Yukawa potential adds
another facet to the postulated duality between the Higgs
and confinement pictures.

It may be an interesting task for future lattice sim-
ulations to find out how the string-breaking distance rB
depends on the quark mass m. It seems also worthwhile
to study for which shape of α̂s(r) in (38) one can achieve
agreement with phenomenological constraints on the
heavy quark potential. In momentum space the quantity

α̃(q2) = αv(q2)
q2

q2 + M̄2
ρ (q2)

, (41)

should be close to

α̃R(q2) =
4π
9

1
ln(1 + q2/Λ2

R)
, (42)

in the momentum range relevant for charmonia. Here
α̃R corresponds to the phenomenologically successful
Richardson potential [18] with ΛR = 400 MeV. One may
also have to take into account that due to the running of
the gauge coupling the effective gluon mass M̄ρ(q2) will
be momentum dependent.

9 Conclusions

We have presented a possible Higgs description of the vac-
uum of two-flavor QCD2 in terms of q̄q and qq-condensates.
Isospin and baryon number are conserved and electric
charges are integer. The quarks can be associated with
baryons and the gluons with vector mesons. Most strik-
ingly, one finds excitations with the quantum numbers of
strange mesons (K∗) and strange baryons (Σ,Λ) in the
spectrum of QCD2.

In this picture the gluons acquire a mass by the Higgs
mechanism. We find that an isospin singlet vector me-
son (ω) remains massless in the absence of a diquark con-
densate. This contrasts with three-flavor QCD3. However,
QCD2 admits also a diquark condensate in the vacuum
which can give a mass to the ω-meson [8]. Despite the
spontaneous breaking of the “standard” baryon number
B by the diquark condensate, there remains a new con-
served baryon number B′. The “hyperon-like states” Σ
and Λ are neutral with respect to B′. In addition, non-
trivial gluon condensates are possible in QCD2. All these
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features differ from QCD3, and we speculate about a phase
transition from QCD3 to QCD2 as the strange quark mass
increases beyond a critical value.

Two-flavor QCD2 cannot be tested directly by exper-
imental observation. On the other hand, QCD2 can be
simulated in lattice calculations, and this may provide im-
portant tests for our picture. The possible tests concern
both the properties of the vacuum and, perhaps at a later
stage, the transition to the high-density state. The most
striking signal would be a phase transition in the vacuum
properties as a function of the strange quark mass. The
characteristics of the high-density transition in QCD2 de-
pend crucially on the vacuum properties.

We also have made a first attempt to understand the
vacuum properties of gluodynamics (without light quarks)
in terms of colored gluonic condensates. The partial failure
of scalar condensates to reproduce an acceptable glueball
spectrum still leaves open the possibility that a type of
color-spin locking [16] may offer an interesting alterna-
tive. In this scenario a residual rotation symmetry is com-
posed of ordinary rotations accompanied by gauge trans-
formations. It seems not completely excluded that such a
color-spin locking condensate could also occur in QCD2
and perhaps give a mass to the ω-meson even in the ab-
sence of a diquark condensate. As an (perhaps more likely)
alternative gluo-dynamics admits no Higgs picture and
spontaneous color breaking occurs only in the presence
of sufficiently light quarks. For all the various alternatives
investigated in this note we have found interesting quali-
tative changes in the transition from QCD3 to QCD2. We
suggest that lattice simulations could clarify this interest-
ing issue.
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